Energy of Graphs

Harishchandra S. Ramane

Department of Mathematics, Karnatak University, Dharwad - 580003, India

Emails: hsramane@yahoo.com
hsramane@kud.ac.in
3rd September 2021

- Let G be a finite, simple, undirected graph with n number of vertices and m number of edges.
- Vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
- Edge set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$.
- Adjacency matrix of G is an $n \times n$ matrix $A(G)=\left[a_{i j}\right]$, in which $a_{i j}=1$ if the vertex v_{i} is adjacent to the vertex v_{j} and $a_{i j}=0$, otherwise.
- Characteristic plynomial of G is $\phi(G: \lambda)=\operatorname{det}(\lambda I-A(G))$.
- Eigenvalues of $A(G)$, denoted by $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are called the eigenvalues of G and their collcetion is called the spectrum of G.
- If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are the distinct eigenvalues of G with respective multiplicities $m_{1}, m_{2}, \ldots, m_{k}$, then

$$
\operatorname{Spec}(G)=\left(\begin{array}{cccc}
\lambda_{1} & \lambda_{2} & \ldots & \lambda_{k} \\
m_{1} & m_{2} & \ldots & m_{k}
\end{array}\right)
$$

Energy of a graph

- The energy of a graph is defined as the sum of the absolute values of the eigenavlues the adjacency matrix of a graph. That is,

$$
\mathcal{E}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right| .
$$

- In the matahematical literature, this quantity was putforward in 1978 by Ivan Gutman, but its chemical roots go back to 1930s.

$$
\phi(G: \lambda)=\lambda^{6}-9 \lambda^{4}-4 \lambda^{3}+12 \lambda^{2}
$$

$$
\begin{gathered}
\operatorname{Spec}(G)=\left(\begin{array}{cccc}
3 & 1 & 0 & -2 \\
1 & 1 & 2 & 2
\end{array}\right) \\
\mathcal{E}(G)=8
\end{gathered}
$$

$$
\begin{gathered}
\phi\left(K_{n}: \lambda\right)=(\lambda-n+1)(\lambda+1)^{n-1} \\
\operatorname{Spec}\left(K_{n}\right)=\left(\begin{array}{cc}
n-1 & -1 \\
1 & n-1
\end{array}\right) \\
\mathcal{E}\left(K_{n}\right)=2(n-1) \\
\phi\left(K_{p, q}: \lambda\right)=\lambda^{p+q-2}\left(\lambda^{2}-p q\right) \\
\operatorname{Spec}\left(K_{p, q}\right)=\left(\begin{array}{ccc}
\sqrt{p q} & 0 & -\sqrt{p q} \\
1 & p+q-2 & 1
\end{array}\right) \\
\mathcal{E}\left(K_{p, q}\right)=2 \sqrt{p q}
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{E}\left(C_{n}\right)= \begin{cases}4 \cot \left(\frac{\pi}{n}\right) & \text { if } n \equiv 0(\bmod 4) \\
4 \operatorname{cosec}\left(\frac{\pi}{n}\right) & \text { if } n \equiv 2(\bmod 4) \\
2 \operatorname{cosec}\left(\frac{\pi}{2 n}\right) & \text { if } n \equiv 1(\bmod 2)\end{cases} \\
\mathcal{E}\left(P_{n}\right)= \begin{cases}2 \operatorname{cosec}\left(\frac{\pi}{2(n+1)}\right)-2 & \text { if } n \equiv 0(\bmod 2) \\
2 \cot \left(\frac{\pi}{2(n+1)}\right)-2 & \text { if } n \equiv 1(\bmod 2)\end{cases}
\end{gathered}
$$

One of the remarkable chemical applications of spectral graph theory is based on the close correspondence between the graph eigenvalues and the molecular orbital energy levels of π-electrons in conjugated hydrocarbons.

Hückel Molecular Orbital Theory

- In 1930s, German Scholar Erich Hückel made certain simplification of Schrodinger wave equation.
- The wave functions ψ are the solutions of Schrodinger wave equation $(H-E) \psi=0$, where H is the energy operator and E is the electron energy.

Hückel replaced the Schrodinger wave function by the secular equation

$$
\operatorname{det}(H-E S)=0
$$

where $H=\alpha I+\beta A$ and $S=I+\sigma A$.

Here α (the Coulomb integral for carbon atom), β (the resoannce integral for two carbon atoms) and σ are all constants.

In the ground state, that is when $\alpha=0$ and $\beta=1, H$ becomes the adjacency matrix $A(G)$ of the associated graph G.

The spectra of graphs can be used to calculate the energy levels of conjugated hydorcarbons as calcultaed with the Hückel Molecular Orbital method.

Figure 2: Butadiene $C_{4} H_{6}$ and its molecular graph.

$$
H=\left[\begin{array}{llll}
\alpha & \beta & 0 & 0 \\
\beta & \alpha & \beta & 0 \\
0 & \beta & \alpha & \beta \\
0 & 0 & \beta & \alpha
\end{array}\right]=\alpha I+\beta A
$$

As a consequences of above equation, the energy levels ε_{i} of the π-electrons are related to the eigenvalues λ_{i} of the graph by the equation

$$
\varepsilon_{i}=\alpha+\beta \lambda_{i}, \quad i=1,2, \ldots n .
$$

In the HMO approximation the total energy of the π-electrons is

$$
E_{\pi}=\sum_{i=1}^{n} g_{i} \varepsilon_{i}
$$

where g_{i} the count of π-electrons with energy ε_{i}, called occupation number. Therefore

$$
E_{\pi}=n \alpha+\beta \sum_{i=1}^{n} g_{i} \lambda_{i}
$$

The total number of π-electrons is equal to the number of vertices of the associated molecular graph.

For majority of conjugated hydorcarbons, $g_{i}=2$ if $\lambda_{i}>0$ and $g_{i}=0$ if $\lambda_{i}<0$. Therfore

$$
\begin{aligned}
E_{\pi} & =n \alpha+2 \beta \sum_{+} \lambda_{i} \\
& =n \alpha+\beta \sum_{i=1}^{n}\left|\lambda_{i}\right| .
\end{aligned}
$$

Because n, α and β are constants, the only nontrivial term is $\sum_{i=1}^{n}\left|\lambda_{i}\right|$.

Hence the graph energy is [Gutman (1978)]

$$
\mathcal{E}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

Coulson integral formula [Coulson (1940)]:

$$
\mathcal{E}(G)=\frac{1}{\pi} \int_{-\infty}^{\infty}\left[n-\frac{\mathbf{i} \lambda \phi^{\prime}(G: \mathbf{i} \lambda)}{\phi(G: \mathbf{i} \lambda)}\right] d \lambda
$$

where $\mathbf{i}=\sqrt{-1}$ and $\phi^{\prime}(G: \lambda)$ is the first derivative of $\phi(G: \lambda)$.

Proof: Let $\phi(G: \lambda)$ be the polynomial of dgeree n in the complex variable z, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be its zeros. Then

$$
\phi(G: z)=\prod_{j=1}^{n}\left(z-\lambda_{j}\right)
$$

and consequently

$$
\frac{\phi^{\prime}(G: z)}{\phi(G: z)}=\sum_{j=1}^{n} \frac{1}{z-\lambda_{j}}
$$

Therefore

$$
\begin{aligned}
\frac{z \phi^{\prime}(G: z)}{\phi(G: z)} & =\sum_{j=1}^{n} \frac{z}{z-\lambda_{j}} \\
& =\sum_{j=1}^{n}\left(1+\frac{\lambda_{j}}{z-\lambda_{j}}\right) \\
& =n+\sum_{j=1}^{n} \frac{\lambda_{j}}{z-\lambda_{j}} .
\end{aligned}
$$

Therefore

$$
\frac{z \phi^{\prime}(G: z)}{\phi(G: z)}-n=\sum_{j=1}^{n} \frac{\lambda_{j}}{z-\lambda_{j}} .
$$

And

$$
\left[\frac{z \phi^{\prime}(G: z)}{\phi(G: z)}-n\right] \longrightarrow 0 \quad \text { as } \quad|z| \longrightarrow \infty
$$

Consider the contour Γ^{+}shown in the Fig. 4.

Figure 4: Positively oriented contour Γ^{+}in the the complex plane.

According to the well known Cauchy formula

$$
\frac{1}{2 \pi \mathbf{i}} \oint_{\Gamma^{+}} \frac{d z}{z-z_{0}}=\left\{\begin{array}{lll}
1 & \text { if } & z_{0} \in \operatorname{int}\left(\Gamma^{+}\right) \\
0 & \text { if } & z_{0} \in \operatorname{ext}\left(\Gamma^{+}\right)
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
\frac{1}{2 \pi \mathbf{i}} \oint_{\Gamma^{+}}\left[\frac{z \phi^{\prime}(G: z)}{\phi(G: z)}-n\right] d z & =\frac{1}{2 \pi \mathbf{i}} \oint_{\Gamma^{+}} \sum_{j=1}^{n} \frac{\lambda_{j}}{z-\lambda_{j}} d z \\
& =\sum_{j=1}^{n} \frac{\lambda_{j}}{2 \pi \mathbf{i}} \oint_{\Gamma^{+}} \frac{d z}{z-\lambda_{j}} \\
& =\sum_{+} \lambda_{j}=\frac{\mathcal{E}(G)}{2}
\end{aligned}
$$

In the limiting case when Γ^{+}becomes infinitely large, the only nonvanishing contribution to the above integral comes from the intergration along the y-axis.
Thus

$$
\begin{aligned}
\mathcal{E}(G) & =\frac{1}{\pi \mathbf{i}} \oint_{\Gamma^{+}}\left[\frac{z \phi^{\prime}(G: z)}{\phi(G: z)}-n\right] d z \\
& =\frac{1}{\pi \mathbf{i}} \int_{-\infty}^{\infty}\left[\frac{z \phi^{\prime}(G: z)}{\phi(G: z)}-n\right] d z+\frac{1}{\pi \mathbf{i}} \int_{\infty}^{-\infty}\left[\frac{z \phi^{\prime}(G: z)}{\phi(G: z)}-n\right] d z \\
& =0+\frac{1}{\pi \mathbf{i}} \int_{\infty}^{-\infty}\left[\frac{\mathbf{i} y \phi^{\prime}(G: \mathbf{i} y)}{\phi(G: \mathbf{i} y)}-n\right] d(\mathbf{i} y) \\
& =\frac{1}{\pi} \int_{-\infty}^{\infty}\left[n-\frac{\mathbf{i} y \phi^{\prime}(G: \mathbf{i} y)}{\phi(G: \mathbf{i} y)}\right] d y \\
& =\frac{1}{\pi} \int_{-\infty}^{\infty}\left[n-\frac{\mathbf{i} \lambda \phi^{\prime}(G: \mathbf{i} \lambda)}{\phi(G: \mathbf{i} \lambda)}\right] d \lambda .
\end{aligned}
$$

Bounds for energy

Theorem (McClelland 1971)

For an (n, m)-graph G,

$$
\sqrt{2 m+n(n-1)|\operatorname{det} A|^{2 / n}} \leq \mathcal{E}(G) \leq \sqrt{2 m n} .
$$

Proof: Lower bound
Since the GM of positive numbers is not greater than their AM,

$$
\begin{aligned}
\frac{1}{n(n-1)} \sum_{i \neq j}\left|\lambda_{i}\right|\left|\lambda_{j}\right| & \geq\left(\prod_{i \neq j}\left|\lambda_{i}\right|\left|\lambda_{j}\right|\right)^{\frac{1}{n(n-1)}} \\
& =\left(\prod_{i=1}^{n}\left|\lambda_{i}\right|^{2(n-1)}\right)^{\frac{1}{n(n-1)}} \\
& =\left(\prod_{i=1}^{n}\left|\lambda_{i}\right|\right)^{2 / n} \\
& =|\operatorname{det} A|^{2 / n}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
(\mathcal{E}(G))^{2} & =\sum_{i=1}^{n} \lambda_{i}^{2}+\sum_{i \neq j}\left|\lambda_{i}\right|\left|\lambda_{j}\right| \\
& \geq 2 m+n(n-1)|\operatorname{det} A|^{2 / n}
\end{aligned}
$$

Therefore

$$
\mathcal{E}(G) \geq \sqrt{2 m+n(n-1)|\operatorname{det} A|^{2 / n}}
$$

Upper bound
Cauchy-Schawrtz inequality

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)
$$

Let $a_{i}=1$ and $b_{i}=\left|\lambda_{i}\right|, i=1,2, \ldots, n$.

$$
\begin{aligned}
\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|\right)^{2} & \leq n \sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \\
(\mathcal{E}(G))^{2} & \leq n(2 m) \\
\mathcal{E}(G) & \leq \sqrt{2 m n} .
\end{aligned}
$$

Equality if and only if $G=(n / 2) K_{2}$.

Theorem (Gutman 2001)

For any graph G with m edges, $2 \sqrt{m} \leq \mathcal{E}(G) \leq 2 m$.
Proof:

$$
\begin{aligned}
(\mathcal{E}(G))^{2} & =\sum_{i=1}^{n} \lambda_{i}^{2}+2 \sum_{1 \leq i<j \leq n}\left|\lambda_{i}\right|\left|\lambda_{j}\right| \\
& \geq 2 m+2\left|\sum_{i<j} \lambda_{i} \lambda_{j}\right|=2 m+2|-m|=4 m \\
\mathcal{E}(G) & \geq 2 \sqrt{m} .
\end{aligned}
$$

For all graphs, $n \leq 2 m$.
Therefore $\mathcal{E}(G) \leq \sqrt{2 m n} \leq \sqrt{(2 m)^{2}}=2 m$.

Theorem (Koolen, Moulton 2001)

Let G be an (n, m)-graph. If $2 m \geq n$, then

$$
\mathcal{E}(G) \leq \frac{2 m}{n}+\sqrt{(n-1)\left[2 m-\left(\frac{2 m}{n}\right)^{2}\right]}
$$

Proof: Cauchy-Schawrtz inequality

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)
$$

Let $a_{i}=1$ and $b_{i}=\left|\lambda_{i}\right|, i=2,3, \ldots, n$.

$$
\begin{aligned}
\left(\sum_{i=2}^{n}\left|\lambda_{i}\right|\right)^{2} & \leq(n-1) \sum_{i=2}^{n}\left|\lambda_{i}\right|^{2} \\
\left(\mathcal{E}(G)-\lambda_{1}\right)^{2} & \leq(n-1)\left(2 m-\lambda_{1}^{2}\right) \\
\mathcal{E}(G) & \leq \lambda_{1}+\sqrt{(n-1)\left(2 m-\lambda_{1}^{2}\right)}
\end{aligned}
$$

Consider the function $f(x)=x+\sqrt{(n-1)\left(2 m-x^{2}\right)}$.
It is decreasing function of the variable $x \in(2 m / n, \sqrt{2 m})$ and attains at $x=2 m / n$ and $\lambda_{1} \geq 2 m / n$.

Therefore $f\left(\lambda_{1}\right) \leq f(2 m / n)$.

Hence

$$
\mathcal{E}(G) \leq \frac{2 m}{n}+\sqrt{(n-1)\left[2 m-\left(\frac{2 m}{n}\right)^{2}\right]}
$$

Equality holds if and only if $G=(n / 2) K_{2}$ or $G=K_{n}$ or G is strongly regular graph with two nontrivial eigenvalues both having absolute values equal to

$$
\sqrt{\frac{\left[2 m-\left(\frac{2 m}{n}\right)^{2}\right]}{(n-1)}}
$$

By immediate consequence of the above inequality it follows that:

Theorem (Koolen, Moulton 2001)

Let G be a graph on n vertices. Then

$$
\mathcal{E}(G) \leq \frac{n(\sqrt{n}+1)}{2}
$$

with equality if and only if G is strongly regular graph with parameters

$$
\left(n, \frac{n+\sqrt{n}}{2}, \frac{n+2 \sqrt{n}}{4}, \frac{n+2 \sqrt{n}}{4}\right) .
$$

Above equality holds only for $n=64,256,1024,4096, \ldots$.

Theorem (Zhou 2004)

If G is a graph with n vertices, m edges and vertex degree sequence $d_{1}, d_{2}, \ldots d_{n}$, then

$$
\mathcal{E}(G) \leq \sqrt{\frac{1}{n} \sum_{i=1}^{n} d_{i}^{2}}+\sqrt{(n-1)\left[2 m-\frac{1}{n} \sum_{i=1}^{n} d_{i}^{2}\right]}
$$

with equality if and only if G is either $(n / 2) K_{2}, K_{n}$, strongly regular graph with two nontrivial eigenvalues both with absolute value $\sqrt{\left(2 m-(2 m / n)^{2}\right) /(n-1)}$ or $n K_{1}$.

Theorem (Zhou and Ramane 2008)

Let G be a bipartite graph with $n \geq 2$ vertices, $m \geq 1$ edges, the first Zagreb index M and an $\left(n_{1}, n_{2}\right)$-bipartition, where $n_{1} \leq n_{2}$. If $M \leq \frac{n m}{n_{1}}$, then

$$
\mathcal{E}(G) \leq 2 \sqrt{\frac{m}{n_{1}}}+2 \sqrt{\left(n_{1}-1\right)\left(m-\frac{m}{n_{1}}\right)}
$$

with equality if and only if $G=n_{1} K_{1, s} \cup\left(n-n_{1}-s n_{1}\right) K_{1}$.

Theorem (Zhou and Ramane 2008)

Let G be a bipartite graph with $n \geq 2$ vertices, $m \geq 1$ edges,and an (n_{1}, n_{2})-bipartition, where $n_{1} \leq n_{2}$. If $m \geq n_{2}$, then

$$
\mathcal{E}(G) \leq \frac{2 m}{\sqrt{n_{1} n_{2}}}+2 \sqrt{\left(n_{1}-1\right)\left(m-\frac{m^{2}}{n_{1} n_{2}}\right)}
$$

Let $S_{n}=K_{1, n-1}$ be the star and P_{n} be the path on n vertices.

$$
\mathcal{E}\left(S_{n}\right) \leq \mathcal{E}\left(T_{n}\right) \leq \mathcal{E}\left(P_{n}\right)
$$

Among all trees with n vertices, star has minimum energy and path has maximum energy.

Let $T_{1}(n)$ be obtained by joining a vertex to a terminal vertex of S_{n-1}.
Let $T_{2}(n)$ be the tree obtained by joining two vertices to a terminal vertex of S_{n-2}.
Let $T_{3}(n)$ be the tree obtained by joining a vertex of P_{2} to a terminal vertex of S_{n-2}.
Let $T_{4}(n)$ be the tree obtained by joining a middle vertex of P_{5} to the terminal vertex of P_{n-5}.

Figure: $S_{9}, T_{1}(9), T_{2}(9), T_{3}(9), T_{4}(9)$.

Theorem (Gutman, 1977)
If T is any tree on n vertices different from $S_{n}, T_{1}(n), T_{2}(n)$,
$T_{3}(n), T_{4}(n)$ and P_{n}, then
$\mathcal{E}\left(S_{n}\right)<\mathcal{E}\left(T_{1}(n)\right)<\mathcal{E}\left(T_{2}(n)\right)<\mathcal{E}\left(T_{3}(n)\right)<\mathcal{E}(T)<\mathcal{E}\left(T_{4}(n)\right)<\mathcal{E}\left(P_{n}\right)$.

Figure: $A_{n}(k)$ and $B_{n}(k)$.

Theorem (Walikar and Ramane 2005)

Let $A_{n}(k)$ and $B_{n}(k)$ be the trees as shown above. Then for any two integers n and k,

$$
\begin{aligned}
& \mathcal{E}\left(A_{n}(1)\right)<\mathcal{E}\left(A_{n}(2)\right)<\cdots<\mathcal{E}\left(A_{n}(\lfloor(n / 2)-1\rfloor)\right) \\
& \mathcal{E}\left(B_{n}(1)\right)<\mathcal{E}\left(B_{n}(2)\right)<\cdots<\mathcal{E}\left(B_{n}(\lfloor(n-3) / 2\rfloor)\right) .
\end{aligned}
$$

Koolen-Moulton (2001) bound is

$$
\mathcal{E}(G) \leq \frac{2 m}{n}+\sqrt{(n-1)\left[2 m-\left(\frac{2 m}{n}\right)^{2}\right]}
$$

If G is an r-regular graph, then

$$
\mathcal{E}(G) \leq r+\sqrt{r(n-1)(n-r)} .
$$

It is attained for the complete graph.

Let

$$
B_{2}=r+\sqrt{r(n-1)(n-r)} .
$$

Balakrishnan (2004) showed that for $\epsilon>0$, there exist infinitely many r-regular graphs G such that $\mathcal{E}(G) / B_{2}<\epsilon$ and he posed the following problem.

Problem (Balakrishnan 2004)

Given a positive integer $n \geq 3$, does there exist an r-regular graph G of order n, such that $\mathcal{E}(G) / B_{2}>1-\epsilon$ for some $r<n-1$?

An affirmative answer to this question is given by Walikar, Ramane, Jog (2008) and by Li, Li, Shi (2010), not for general n but when $n \equiv 1(\bmod 4), n \geq 5$.

In both papers same example is considered, namely the Paley graph.

The Paley graph G_{p} is a strongly regular graph with parameters

$$
\left(n, \frac{n-1}{2}, \frac{n-5}{4}, \frac{n-1}{4}\right) .
$$

It is a regular graph of degree $(n-1) / 2$ and

$$
\operatorname{Spec}\left(G_{p}\right)=\left(\begin{array}{ccc}
\frac{n-1}{2} & \frac{-1+\sqrt{n}}{2} & \frac{-1-\sqrt{n}}{2} \\
1 & \frac{n-1}{2} & \frac{n-1}{2}
\end{array}\right)
$$

$$
\mathcal{E}\left(G_{p}\right)=\frac{(n-1)(\sqrt{n}+1)}{2}
$$

and

$$
\begin{aligned}
B_{2} & =r+\sqrt{r(n-1)(n-r)} \\
& =\frac{(n-1)(1+\sqrt{n+1})}{2} .
\end{aligned}
$$

Therefore

$$
\frac{\mathcal{E}\left(G_{p}\right)}{B_{2}}=\frac{\sqrt{n}+1}{1+\sqrt{n+1}} \longrightarrow 1 \text { as } n \longrightarrow \infty .
$$

It follows that for any $\epsilon>0$ and some integer N, if $n>N$ then

$$
\frac{\mathcal{E}\left(G_{p}\right)}{B_{2}}>1-\epsilon
$$

Table: Ratio of $\mathcal{E}\left(G_{p}\right)$ to B_{2}

n	$\mathcal{E}\left(G_{p}\right)=\frac{(n-1)(\sqrt{n}+1)}{2}$	$B_{2}=\frac{(n-1)(1+\sqrt{n+1)}}{2}$	$\mathcal{E}\left(G_{p}\right) / B_{2}$
5	6.472135955	6.8989794856	0.9381294681
101	552.4937811	554.9752469	0.9955286910
525065	190496813.3110102	190496994.46400146	0.9999990490
1011101	508853860.6970579	508854112.1	0.9999995059
102496524	518891553299.8796	518891555830.893789	0.9999999951

Hyperenergetic graphs:

- For molecular graphs McClelland showed that

$$
\mathcal{E}(G) \approx a \sqrt{2 m n}
$$

where $a \approx 0.9$.

- Among all graphs with n vertices, the complete graph K_{n} has maximum edges equal to $m=n(n-1) / 2$.
- With this observation, Gutman (1978) conjectured that, among all graphs with n vertices, the complete graph has maximum energy.
- That is, if G is any graph with n vertices then

$$
\mathcal{E}(G) \leq \mathcal{E}\left(K_{n}\right)=2(n-1)
$$

But this conjecture is not true.

$$
\text { Spectra }=\left(\begin{array}{cccc}
5 & 2.2361 & -2.2361 & -1 \\
1 & 3 & 3 & 5
\end{array}\right)
$$

$\mathcal{E}(G) \approx 23.4166$ and $\mathcal{E}\left(K_{12}\right)=22$.

- In 1999, Walikar, Ramane and Hampiholi proposed the first systematic construction of infinite number of graphs for which this conjecture does not hold.
-

$$
\operatorname{Spec}\left(K_{n}\right)=\left(\begin{array}{cc}
n-1 & -1 \\
1 & n-1
\end{array}\right)
$$

-

$$
\operatorname{Spec}\left(L\left(K_{n}\right)\right)=\left(\begin{array}{ccc}
2 n-4 & n-4 & -2 \\
1 & n-1 & n(n-3) / 2
\end{array}\right)
$$

- For $n \geq 5$,

$$
\mathcal{E}\left(L\left(K_{n}\right)\right)=|2 n-4|+|n-4|(n-1)+|-2|(n(n-3) / 2)=2 n^{2}-6 n
$$

-

$$
\mathcal{E}\left(K_{n(n-1) / 2}\right)=2\left(\frac{n(n-1)}{2}-1\right)=n^{2}-n-2
$$

- $\mathcal{E}\left(L\left(K_{n}\right)\right)>\mathcal{E}\left(K_{n(n-1) / 2}\right)$.

There are several other examples for which this conjceture does not hold. For instance:
(i) $\overline{L\left(K_{n}\right)}, n \geq 6$.
(ii) $L\left(K_{p, p,}\right)$ and $\overline{L\left(K_{p, p, p}\right)}, p \geq 4$.
(iii) A regular graph on $n=2 k$ vertices and of degree $2 k-2$ and its complement, $k>3$.

A graph G is said to be hyperenergetic if

$$
\mathcal{E}(G)>\mathcal{E}\left(K_{n}\right)=2(n-1)
$$

The total graph of G, denoted by $T(G)$ is a graph with vertex set $V(G \cup E(G)$ and two vertices in $T(G)$ are adjacent if and only if the corresponding elements of G are adjacent or incident in G.

Theorem

For any r-regular graph G of order n, (i) $L(G)$ is hyperenergetic if $r \geq 4$;
(ii) $T(G)$ is hyperenergetic if $r \geq 6$;
where $L(G)$ is the line graph and $T(G)$ is the total graph of G.

Proof:

(i) If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of a regular graph G, then the eigenvalues of $L(G)$ are $\lambda_{i}+r-2, i=1,2, \ldots, n$ and -2 ($m-n$ times).

$$
\begin{aligned}
\mathcal{E}(L(G)) & =\sum_{i=1}^{n}\left|\lambda_{i}+r-2\right|+|-2|(m-n) \\
& \geq\left|\sum_{i=1}^{n}\left(\lambda_{i}+r-2\right)\right|+2(m-n) \\
& =n(r-2)+2(m-n)=2 m+n(r-4)
\end{aligned}
$$

The graph $L(G)$ is hyperenergetic if $\mathcal{E}(L(G))>2(m-1)$. That is if $2 m+n(r-4)>2 m-2$. It holds if $r \geq 4$.
(ii) If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of a regular graph G, then the eigenvalues of $T(G)$ are

$$
\frac{1}{2}\left(2 \lambda_{i}+r-2 \pm \sqrt{4 \lambda_{i}+r^{2}+4}\right), \quad i=1,2, \ldots, n
$$

and -2 ($m-n$ times). Therefore

$$
\begin{aligned}
\mathcal{E}(T(G)) & =\sum_{i=1}^{n}\left|\frac{1}{2}\left(2 \lambda_{i}+r-2 \pm \sqrt{4 \lambda_{i}+r^{2}+4}\right)\right|+|-2|(m-n) \\
& \geq\left|\sum_{i=1}^{n} \frac{1}{2}\left(2 \lambda_{i}+r-2 \pm \sqrt{4 \lambda_{i}+r^{2}+4}\right)\right|+2(m-n) \\
& =n(r-2)+2(m-n)=2 m+n(r-4) .
\end{aligned}
$$

The order of $T(G)$ is $m+n$. Therefore $T(G)$ is hyperenergetic if $\mathcal{E}(T(G))>2(m+n-1)$. That is $2 m+n(r-4)>2(m+n-1)$. It holds as $r \geq 6$.

Theorem (Hou, Gutman 2001)

If $m \geq 2 n$ then $L(G)$ is hyperenergetic.
Proof: $\phi(L(G): \lambda)=(\lambda+2)^{m-n} \operatorname{det}[(\lambda+2) I-(D(G)+A(G))]$
If $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ are the eigenvalues of $D(G)+A(G)$ then eigenvalues of $L(G)$ are $-2(m-n$ times $)$ and $\mu_{i}-2$, $i=1,2, \ldots, n$.

$$
\begin{aligned}
\mathcal{E}(L(G)) & =|-2|(m-n)+\sum_{i=1}^{n}\left|\mu_{i}-2\right| \geq 2(m-n)+\sum_{i=1}^{n}\left(\left|\mu_{i}\right|-2\right) \\
& =2(m-n)+\sum_{i=1}^{n}\left(\mu_{i}-2\right), \quad \text { since } \mu_{i} \geq 0 \\
& =2(m-n)+2 m-2 n=4(m-n)
\end{aligned}
$$

$L(G)$ is hyperenergetic if $4(m-n)>2(m-1)$.
That is if $m>2 n-1$ then $\mathcal{E}(L(G))>2(m-1)$.

Let v be the vertex of a complete graph $K_{n}, n \geq 3$ and let e_{i}, $i=1,2, \ldots k, 1 \leq k \leq n-1$ be its distinct edges, all being incident to v. The graph $K a_{n}(k)$ is obtained by deleting e_{i}, $i=1,2, \ldots, k$ from K_{n}.

For $n \geq 3$ and $0 \leq k \leq n-1$, the eigenvalues of $K a_{n}(k)$ are -1 ($n-3$ times) and three roots x_{1}, x_{2}, x_{3} of the equation $x^{3}-(n-3) x^{2}-(2 n-k-3) x+(k-1)(n-1-k)=0$, of which two (say x_{1} and x_{2}) are positive and one (say x_{3}) is negative.
Therefore

$$
\begin{aligned}
\mathcal{E}\left(K a_{n}(k)\right) & =n-3+\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right| \\
& =n-3+x_{1}+x_{2}-x_{3} .
\end{aligned}
$$

Thus $\mathcal{E}\left(K a_{n}(k)\right)>\mathcal{E}\left(K_{n}\right)=2(n-1)$ if $x_{1}+x_{2}-x_{3}>n+1$.
This is true for $k=2, n \geq 10 ; k=3, n \geq 9 ; k=4, n \geq 9$;
$k=5, n \geq 10 ; k \geq 6$ and $n \geq k+4$.
This shows that there are hyperenergetic graphs on n vertices for all $n \geq 9$.

Theorem (Walikar, Gutman, Hampiholi, Ramane 2001)

If $m \leq 2 n-2$, then G is non-hyperenergetic.
Proof: Koolen-Moulton bound is

$$
\mathcal{E}(G) \leq \frac{2 m}{n}+\sqrt{(n-1)\left[2 m-\left(\frac{2 m}{n}\right)^{2}\right]}
$$

If

$$
\frac{2 m}{n}+\sqrt{(n-1)\left[2 m-\left(\frac{2 m}{n}\right)^{2}\right]}<2(n-1)
$$

then G is non-hyperenergetic. This equation reduces to

$$
[m-2(n-1)][m-(n(n-1) / 2)]>0 .
$$

It is true for $m>n(n-1) / 2$ and $m<2(n-1)$. The condition $m>n(n-1) / 2$ is impossible. Therefore there remains $m<2(n-1)$. Hence the proof.

Let G_{1} be $\left(n_{1}, m_{1}\right)$-graph such that $m_{1} \leq 2 n_{1}-2$.
Let G_{2} be $\left(n_{2}, m_{2}\right)$-graph such that $m_{2} \leq 2 n_{2}-2$.

- All graphs whose average vertex degree is less than 3.5 are nonhyperenergetic.
- No Hückel graph is hyperenergetic.
- All 1, 2, 3 regular graphs are nonhyperenergeic.
- All graphs whose blocks have average degree less than 3.5 are nonhyperenergetic.
- All trees are nonhyperenergetic.
- All graphs in which every edge belongs to atmost one cycle (cactii) are nonhyperenergetic.

References

围 B．D．Acharya，S．B．Rao，H．B．Walikar，Energy of signed di－ graphs，Lecture Notes，Group Discussion on Energy of a Graph， Karnatak University，Dharwad，July 2003.
R．R．Balakrishnan，The energy of a graph，Lin．Algebra Appl．， 387 （2004），287－295．

围 C．A．Coulson，On the calculation of the energy in unsaturated hydrocarbon molecules，Proc．Cambridge Phil．Soc．， 36 （1940）， 201－203．

國 D．M．Cvekković，M．Dobb，H．Sachs，Spectra of Graphs，Aca－ demic Press，New York， 1980.

嗇 I．Gutman，Acyclic systems with extremal Huckel π－electron en－ ergy，Theor．Chim．Acta， 45 （1977），79－ 87.
嗇 I．Gutman，The energy of a graph，Ber．Math．Statist．Sekt． Forschungszentrum Graz， 103 （1978），1－22．

围 I．Gutman，Hyperenergetic molecular graphs，J．Serb．Chem． Soc．， 64 （1999），199－205．

围 I．Gutman，The energy of a graph：old and new results，in： Algebraic Combinatorics and Applications，（Eds．A．Betten，A． Kohnert，R．Laue，A．Wassermann），Springer，Berlin，2001，pp． 196－211．
目 Y．Hou，I．Gutman，Hyperenergetic line graphs，MATCH Com－ mun．Math．Comput．Chem．， 43 （2001），29－39．

围 E．Hückel，Quantentheoretische Beitrage zum Benzolproblem， Z．Phys．， 70 （1931），204－286．

围 J．H．Koolen，V．Moulton，Maximal energy graphs，Adv．Appl． Math．， 26 （2001），47－52．

围 X．Li，Y．Li，Y．Shi，Note on the energy of regular graphs，Lin． Algebra Appl．， 432 （2010），1144－1146．

围 X．Li，Y．Shi，I．Gutman，Graph Energy，Springer，New York， 2012.

圊 B．J．McClelland，Properties of the latent roots of a matrix：The estimation of π－electron energies，J．Chem．Phys．， 54 （1971）， 640－643．
目 H．S．Ramane，Energy of graphs，in：Handbook of Research on Advanced Applications of Graph Theory in Modern Society， （Eds．M．Pal，S．Samanta，A．Pal），IGI Global，Hershey PA， 2020，pp．267－296．

圊 H．Sachs，Über Teiler，Faktoren und charakteristische Polynome von Graphen，Teil II，Wiss．Z．Th Ilmenau， 13 （1967），405－412．
囯 H．B．Walikar，I．Gutman，P．R．Hampiholi，H．S．Ramane， Nonhyperenergetic graphs，Graph Theory Notes New York， 51 （2001），14－16．

嗇 H．B．Walikar，H．S．Ramane，Energy of trees with edge in－ dependence number two，Proc．Nat．Acad．Sci．，India，75（A） （2005），137－140．

E H．B．Walikar，H．S．Ramane，P．R．Hampiholi，On the energy of a graph，in：Graph Connections，（Eds．R．Balakrishnan，H． M．Mulder，A．Vijaykumar），Allied Publishers，New Delhi，1999， pp．120－123．

囲 H．B．Walikar，H．S．Ramane，S．R．Jog，On an open problem of R．Balakrishnan and the energy of products of graphs，Graph Theory Notes New York， 55 （2008），41－44．

目 B．Zhou，Energy of graphs，MATCH Commun．Math．Comput． Chem．， 51 （2004），111－118．

围 B．Zhou，H．S．Ramane，On upper bounds for energy of bipartite graphs，Indian J．Pure Appl．Math．， 39 （2008），483－490．

Thank You

